Direct crosslinking of the antitumor antibiotic sparsomycin, and its derivatives, to A2602 in the peptidyl transferase center of 23S-like rRNA within ribosome-tRNA complexes.
نویسندگان
چکیده
The antitumor antibiotic sparsomycin is a universal and potent inhibitor of peptide bond formation and selectively acts on several human tumors. It binds to the ribosome strongly, at an unknown site, in the presence of an N-blocked donor tRNA substrate, which it stabilizes on the ribosome. Its site of action was investigated by inducing a crosslink between sparsomycin and bacterial, archaeal, and eukaryotic ribosomes complexed with P-site-bound tRNA, on irradiating with low energy ultraviolet light (at 365 nm). The crosslink was localized exclusively to the universally conserved nucleotide A2602 within the peptidyl transferase loop region of 23S-like rRNA by using a combination of a primer extension approach, RNase H fragment analysis, and crosslinking with radioactive [(125)I]phenol-alanine-sparsomycin. Crosslinking of several sparsomycin derivatives, modified near the sulfoxy group, implicated the modified uracil residue in the rRNA crosslink. The yield of the antibiotic crosslink was weak in the presence of deacylated tRNA and strong in the presence of an N-blocked P-site-bound tRNA, which, as was shown earlier, increases the accessibility of A2602 on the ribosome. We infer that both A2602 and its induced conformational switch are critically important both for the peptidyl transfer reaction and for antibiotic inhibition. This supposition is reinforced by the observation that other antibiotics that can prevent peptide bond formation in vitro inhibit, to different degrees, formation of the crosslink.
منابع مشابه
Ribosomal features essential for tna operon induction: tryptophan binding at the peptidyl transferase center.
Features of the amino acid sequence of the TnaC nascent peptide are recognized by the translating ribosome. Recognition leads to tryptophan binding within the translating ribosome, inhibiting the termination of tnaC translation and preventing Rho-dependent transcription termination in the tna operon leader region. It was previously shown that inserting an adenine residue at position 751 or intr...
متن کاملChanges produced by bound tryptophan in the ribosome peptidyl transferase center in response to TnaC, a nascent leader peptide.
Studies in vitro have established that free tryptophan induces tna operon expression by binding to the ribosome that has just completed synthesis of TnaC-tRNA(Pro), the peptidyl-tRNA precursor of the leader peptide of this operon. Tryptophan acts by inhibiting Release Factor 2-mediated cleavage of this peptidyl-tRNA at the tnaC stop codon. Here we analyze the ribosomal location of free tryptoph...
متن کامل23S rRNA nucleotides in the peptidyl transferase center are essential for tryptophanase operon induction.
Distinct features of the ribosomal peptide exit tunnel are known to be essential for recognition of specific amino acids of a nascent peptidyl-tRNA. Thus, a tryptophan residue at position 12 of the peptidyl-tRNA TnaC-tRNA(Pro) leads to the creation of a free tryptophan binding site within the ribosome at which bound tryptophan inhibits normal ribosome functions. The ribosomal processes that are...
متن کاملStructural basis of the ribosomal machinery for peptide bond formation, translocation, and nascent chain progression.
Crystal structures of tRNA mimics complexed with the large ribosomal subunit of Deinococcus radiodurans indicate that remote interactions determine the precise orientation of tRNA in the peptidyl-transferase center (PTC). The PTC tolerates various orientations of puromycin derivatives and its flexibility allows the conformational rearrangements required for peptide-bond formation. Sparsomycin b...
متن کاملStructure of the 70S ribosome bound to release factor 2 and a substrate analog provides insights into catalysis of peptide release.
We report the crystal structure of release factor 2 bound to ribosome with an aminoacyl tRNA substrate analog at the ribosomal P site, at 3.1 A resolution. The structure shows that upon stop-codon recognition, the universally conserved GGQ motif packs tightly into the peptidyl transferase center. Nucleotide A2602 of 23S rRNA, implicated in peptide release, packs with the GGQ motif in release fa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 96 16 شماره
صفحات -
تاریخ انتشار 1999